
1.1. Theoretical Methods and Computational Chemistry 
 

Theoretical methods and computational techniques are used to model or mimic the behavior of 

molecules and deliver access to their geometric and electronic structures, allowing the calculation of many 

properties of chemical systems.  

Obviously, atomic entities in molecular systems have to be modeled using a mathematical 

description within a physical model, coupled to computational tools for solving the subsequent equations. 

Simplest models describe the atoms as the smallest individual units using classical (i.e. Newtonian) 

mechanics, replacing (and grouping) nuclei and electrons by material points (either charged or not), thereby 

describing interatomic interaction by parameterized forces (spring-like interactions), constructing a 

parameterized force field. This method is known as molecular mechanics (MM).  

More sharply, a molecular system may be modeled within the physical reality of its constituents, 

describing explicitly atoms as its constituents, which are electrons moving in the field of positively charged 

nuclei. Obviously, Newton’s laws of physics are no more of help at the atomic scale and these models 

employ quantum physics. 

In this section, elementary quantum mechanics (QM) used in chemistry will be shortly reviewed to 

lay the foundations for a short theoretical discussion on density functional theory (DFT), later used in this 

work to assess an interesting regiochemistry question.  

The current discussion has been inspired by quantum mechanical and molecular modeling 

textbooks [1,2,3,4,5,6]. Nevertheless, some landmark papers and important references are explicitly cited 

in the text.  

The present section is obviously not intended for a comprehensive, in depth discussion of quantum 

physics. Its goal is to expose the fundamental principles needed for the understanding and the practical use 

of modern quantum chemistry methods. 

 

 “Everything we call real is made of things that cannot be regarded as real.”  

 “When it comes to atoms, language can be used only as in poetry. The poet, too, is not nearly so 

concerned with describing facts as with creating images.”  

 Niels Bohr 

  



1.1.1. Elementary quantum chemistry 

In the present section will only be discussed the stationary many-body quantum problem. Evolution 

of the system with time and solving the time-dependent Schrödinger’s equation will not be considered. The 

time-dependent Schrödinger’s wave equation is given for information:  
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�, the Laplacian operator. 

1.1.1.1. The time-independent Schrödinger’s wave equation 

First will be introduced the Born-Oppenheimer approximation which is a central concept in quantum 

theory and computation. The Born-Oppenheimer approximation has its basis on the fact that the nuclear 

motion is slower than that of electrons. Within this approximation, the nuclei are considered as fixed for 

solving the electronic Schrödinger’s equation in order to obtain an electronic wavefunction; so that the 

electrons are moving in a constant external potential due to the nuclei.1 Therefore, a stationary electronic 

state is described by an electronic wavefunction 𝛹𝛹(𝜒𝜒1, … ,𝜒𝜒𝑁𝑁) satisfying the N-electron time-independent 

Schrödinger equation: 
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where 𝐻𝐻�𝑒𝑒 is the electronic Hamiltonian, 𝐸𝐸𝑒𝑒 is the electronic energy, 𝜒𝜒𝑖𝑖 stands for the three space variables 

and the spin variable of electron i, and 𝑉𝑉�(𝑟𝑟) is the potential energy operator arising from the external field 

due to positively charged nuclei. The Hamiltonian operator is a differential operator representing the total 

energy, which is written in atomic units in a convenient form: 

𝐻𝐻�𝑒𝑒 = 𝑇𝑇�𝑒𝑒 + 𝑉𝑉�𝑁𝑁,𝑒𝑒 + 𝑉𝑉�𝑒𝑒,𝑒𝑒     (1.3) 
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The solution of an electronic Hamiltonian is an electronic wavefunction depending on the electronic 

spatial and spin coordinates, {𝑟𝑟𝚤𝚤��⃗ } and {𝑠𝑠𝑖𝑖}, collectively termed {𝜒𝜒𝚤𝚤���⃗ }. Atomic units are particularly well adapted 

                                                
1 The nuclear wavefunction is calculated by solving the nuclear Schrödinger’s equation in which the 
electronic energy 𝐸𝐸𝑒𝑒 of (1.2) appears in the potential term. The BO approximation allows the wavefunction 
and the total energy of a molecule to be broken into its electronic and nuclear components: 𝜓𝜓𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 =
𝛹𝛹𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  𝛹𝛹𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 and 𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 +  𝐸𝐸𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛  



for working with atoms and molecules. In this system, the mass of the electron (𝑚𝑚𝑒𝑒), its charge modulus 

(|𝑒𝑒|), the permittivity of vacuum (4𝜋𝜋𝜋𝜋0), and the reduced Planck’s constant (ℏ = ℎ
2𝜋𝜋

) are all set to unity.  

From now we will only consider the electronic problem, so the subscripts referring to the electronic 

Schrödinger’s equation will be dropped.  

Table 1. Atomic units. 

Quantity Atomic unit Value in SI units Symbol 

Mass Rest mass of the electron 9.1094 10-31 kg 𝑚𝑚𝑒𝑒 

Charge Elementary charge 1.6022 10-19 C 𝑒𝑒 

Action Reduced Planck’s constant 1.0546 10-34 J s ℏ 

Length 4𝜋𝜋𝜋𝜋0ℏ / 𝑚𝑚𝑒𝑒𝑒𝑒2 5.2918 10-11 m 𝑎𝑎0 

Energy ℏ / 𝑚𝑚𝑒𝑒𝑎𝑎02 4.3597 10-18 J 𝐸𝐸ℎ 

The wavefunction is not an observable, it is a probability amplitude. Its only physical interpretation 

is associated with its square modulus: 

|𝛹𝛹(𝜒𝜒𝑖𝑖)|2𝑑𝑑𝜒𝜒 = 𝑃𝑃(𝜒𝜒𝑖𝑖)𝑑𝑑𝜒𝜒    (1.5) 

The wavefunction is obviously normalized as the probability to find the particle all over the space 

should be equal to one. So, integration of the probability amplitude over space is necessary equal to unity: 

�|𝛹𝛹(𝜒𝜒𝑖𝑖)|2𝑑𝑑𝜒𝜒 = 1    (1.6) 

A wavefunction satisfying equation (1.6) is said to be normalized. From now, we will only deal with 

normalized wavefunctions. 

1.1.1.2. The variational principle 

The ultimate goal of most quantum mechanical methods is to find a solution to the time-independent 

Schrödinger’s equation. Unfortunately, no analytic solution can be found for systems consisting in more than 

two particles. Hence, the problem to be solved is the so-called “many-body problem” and an approximate 

solution of the Schrödinger’s equation has to be found. A systematic tool for approaching the exact ground-

state wavefunction 𝛹𝛹0 lays in the variational principle, a central method in quantum physics.  

In quantum mechanics, the expectation value of the observable associated with the operator 𝑂𝑂� is 

given by the following equation:  



〈𝑂𝑂�〉 =
∫𝛹𝛹∗𝑂𝑂�  𝛹𝛹𝛹𝛹𝜒𝜒
∫𝛹𝛹∗𝛹𝛹𝛹𝛹𝜒𝜒

=
〈𝛹𝛹�𝑂𝑂��𝛹𝛹〉
⟨𝛹𝛹|𝛹𝛹⟩

    (1.7)2 

Using the Hamiltonian operator in equation (1-7) will return the energy as the expectation value. 

Then, the variational principle states that, from any guessed 𝛹𝛹, the related energy eigenvalue will be an 

upper bound to the exact ground-state energy (unless the trial function is the exact one): 

〈𝐻𝐻�〉 =
〈𝛹𝛹𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡�𝐻𝐻��𝛹𝛹𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡〉
⟨𝛹𝛹𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡|𝛹𝛹𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡⟩

= 𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ≥
〈𝛹𝛹0�𝐻𝐻��𝛹𝛹0〉
⟨𝛹𝛹0|𝛹𝛹0⟩

= 𝐸𝐸0    (1.8) 

𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝐸𝐸0
𝑖𝑖𝑖𝑖𝑖𝑖
��  𝛹𝛹𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝛹𝛹0    (1.9) 

Therefore, the strategy for finding the ground-state energy and wavefunction will consist in 

minimizing the functional 𝐸𝐸[𝛹𝛹] for searching the best wavefunction among acceptable N-electron functions. 

1.1.1.3. Spin-orbitals 

For one electron systems (i.e. a two particles problem), the Schrödinger‘s equation can be solved 

exactly (analytically) and its wavefunctions are called orbitals. However, it is no longer the case when more 

than two interacting particles are considered and the many-body problem of many-electron atoms needs 

the use of the orbital approximation. Within this formalism, the many-electron wavefunction is replaced by 

mono-electronic entities, each electron being treated separately. The total electronic wavefunction is then 

expressed as a product of mono-electronic functions: 

𝛹𝛹(𝜒𝜒𝑖𝑖) = 𝛹𝛹(𝜒𝜒1)𝛹𝛹(𝜒𝜒2) …𝛹𝛹(𝜒𝜒𝑁𝑁)     (1.10) 

Let’s take a two-electron example for this fundamental approximation used to describe atoms by 

means of orbital configurations: 

𝛹𝛹�𝜒𝜒1,𝜒𝜒2� = 𝛹𝛹(𝜒𝜒1)𝛹𝛹(𝜒𝜒2) 𝑎𝑎𝑎𝑎𝑎𝑎 𝑃𝑃�𝜒𝜒1,𝜒𝜒2� = 𝑃𝑃1(𝜒𝜒1)𝑃𝑃2(𝜒𝜒2)     (1.11) 

The total wavefunction depending on spatial and spin coordinates of both electrons is then 

expressed as a product of two functions, depending only on the position and spin coordinates of one 

electron. The probability amplitude of the total wavefunction is therefore approximated to the product of 

probabilities of finding each electron at given points independently. If this approximation may, at first glance, 

give the impression that repulsion between electrons is not taken into account, it is evidently not true, since 

the two orbitals are not solutions of a one-electron Schrödinger’s equation. The functions 𝛹𝛹(𝜒𝜒1) and 𝛹𝛹(𝜒𝜒2) 

of equation (1.11) indeed include electronic repulsion in an averaged manner. However, it lacks of electronic 

                                                
2 Dirac’s bra-ket notation.  



correlation as the motion of an electron is not correlated to the motion of the other, but only “feels” this 

electron as an average field.  

Within the orbital approximation, we can write the ground-state electronic configuration of helium 

as: 

He: 1𝑠𝑠2 = 1𝑠𝑠1𝛼𝛼 1𝑠𝑠2
𝛽𝛽 = 1𝑠𝑠(1) 1𝑠𝑠(� 2) = 𝛹𝛹He    (1.12) 

where α and β superscripts stand for the two spin states whether 1𝑠𝑠(1) and 1𝑠𝑠(� 2) are associated with α and 

β spins of electrons 1 and 2. But one can see that this expression of the helium wavefunction does not fulfill 

Pauli’s antisymmetry principle. Indeed, when interchanging a pair of electrons (and moreover, fermions), 

the wavefunction must change sign. So an acceptable form for the two-electron wavefunction is: 

𝛹𝛹He =
1
√2

�1𝑠𝑠(1) 1𝑠𝑠(� 2) − 1𝑠𝑠(2) 1𝑠𝑠(� 1)�3     (1.13) 

Hopefully we can write this in a convenient form as these products are the expansion of a 

determinant:  

𝛹𝛹He =
1
√2

�
1𝑠𝑠(1) 1𝑠𝑠(2)
1𝑠𝑠(� 1) 1𝑠𝑠(� 2)�      (1.14) 

We may generalize the expression (1.14) to heavier atoms. We will therefore have to write each 

permutation of electrons, which leads to 𝑁𝑁! products whether the normalizing constant becomes 1/√𝑁𝑁!. So 

more generally, we obtain the Slater determinant, 𝛷𝛷𝑆𝑆𝑆𝑆: 

𝛹𝛹(𝜒𝜒1,𝜒𝜒2, … ,𝜒𝜒𝑁𝑁) =
1
√𝑁𝑁!

�
𝜑𝜑1(𝜒𝜒1) ⋯ 𝜑𝜑1(𝜒𝜒𝑁𝑁)

⋮ ⋱ ⋮
𝜑𝜑𝑁𝑁(𝜒𝜒1) ⋯ 𝜑𝜑𝑁𝑁(𝜒𝜒𝑁𝑁)

� = |𝜑𝜑1 𝜑𝜑2 …  𝜑𝜑𝑁𝑁| =  𝛷𝛷𝑆𝑆𝑆𝑆     (1.15) 

Hence, the goal of computational methods is to find the mono-electronic 𝜑𝜑𝑖𝑖 of any chemical or 

atomic system. It should be reminded that replacement of the true N-electron wavefunction by a single Slater 

determinant consists in a fairly drastic approximation.  

Historically, Douglas Hartree firstly computed numerical functions [7], later fitted to analytical forms 

by John Slater to obtain the so-called Slater orbitals [8]. These functions depend on the three spatial 

coordinates (𝑟𝑟,𝜃𝜃,𝜙𝜙) 4 and one spin coordinate and have the general form of:  

𝜑𝜑𝑖𝑖 = (𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐). (𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑜𝑜𝑜𝑜 𝑟𝑟). (𝑠𝑠𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎) 

                                                
3 1/√2 has been added to retain the normalizing condition, ∫𝛹𝛹𝐻𝐻𝐻𝐻𝛹𝛹𝐻𝐻𝐻𝐻

∗ 𝑑𝑑𝜒𝜒1𝑑𝑑𝜒𝜒2 = 1 
4 (𝑟𝑟,𝜃𝜃,𝜙𝜙) are the spatial coordinates in a spherical coordinates system. 



𝜑𝜑𝑖𝑖 = 𝑅𝑅𝑛𝑛(𝑟𝑟) 𝑌𝑌𝑚𝑚𝑙𝑙 (𝜃𝜃,𝜙𝜙) = 𝑁𝑁 𝑟𝑟𝑛𝑛−1 𝑒𝑒−𝜁𝜁𝜁𝜁 𝑌𝑌𝑚𝑚𝑙𝑙 (𝜃𝜃,𝜙𝜙)    (1.16) 5 

One would notice that the radial part of these wavefunctions is responsible for the atom-to-atom 

variations. The spherical harmonic part of these orbitals is identical to the one of hydrogen, for which the 

exact analytical forms are known. This is made possible by adopting the central field approximation, so that 

each electron feels a potential that only depends on its radial distance from the nucleus. 

1.1.1.4. Molecular orbitals (MOs) 

Once dealing with molecules (rather than atoms), one would expect the molecular wavefunctions Ψ 

to have the same appearance than the atomic wavefunctions 𝛹𝛹. So, applying the orbital approximation, we 

write the total molecular wavefunction as a product of mono-electronic molecular spin-orbitals, 𝛷𝛷𝑖𝑖: 

Ψ =  𝛷𝛷1𝛷𝛷2 …  𝛷𝛷𝑁𝑁     (1.17) 
  

If the ultimate objective of molecular computational methods is to compute the molecular 

wavefunction Ψ, the problem is usually solved by firstly transferring it one step further, expressing the 

molecular spin-orbitals as linear combinations of known atomic orbitals 𝜑𝜑𝑗𝑗: 

𝛷𝛷𝑖𝑖 =  �𝑐𝑐𝑖𝑖𝑖𝑖  𝜑𝜑𝑗𝑗
𝑗𝑗

     (1.18) 

This is the basis of the so-called linear combination of atomic orbitals (LCAO) method. Finding the 

molecular wavefunction is then reduced to the determination of the 𝑐𝑐𝑖𝑖𝑖𝑖 coefficients from the expansion of 

molecular spin-orbitals in terms of atomic orbitals. The j index range depends on how big an expansion is 

taken, in other words on the size of an atomic orbitals basis set (see 1.5.4). 

Applying the variational principle to the LCAO coefficients will therefore produce the lowest energy 

wavefunction inside the use of a particular basis set. Indeed, increasing the set of atomic orbitals for the 

calculation of a wavefunction will add more flexibility to it, and the variational procedure will deliver a lower 

energy function. The more flexible the wavefunction (i.e. the larger the basis set expansion), the lower the 

wavefunction energy. As a result, the computed Slater determinant will be closer to the exact solution.  

1.1.2. The Hartree-Fock method and the self-consistent molecular orbitals 

The Hartree-Fock (HF) approximation is a corner stone in all computational techniques in quantum 

chemistry and quantum physics. It has originally been developed in the late 1920s, soon after the publication 

of the Schrödinger’s equation in 1926 [9]. However its usage only spread later with the advent of computer 

electronics, making the calculation feasible. So, considering molecular calculations, the variational principle 

                                                
5 𝜁𝜁 is a constant related to the effective charge of the nucleus. Indeed, the total nuclear charge felt by a 
particular electron is decreased due to the presence of a shielding electron cloud in poly-electronic atoms. 



has to be applied to the linear coefficients 𝑐𝑐𝑖𝑖𝑖𝑖 of the molecular spin-orbitals as they represent the only flexible 

components of the Slater determinant. Within the HF approximation, the energy is computed as the 

eigenvalue of a particular one-electron operator, the Fock operator: 

𝐸𝐸𝐻𝐻𝐻𝐻 = min𝐸𝐸[𝛷𝛷𝑆𝑆𝑆𝑆]  𝑎𝑎𝑎𝑎𝑎𝑎 𝐹𝐹�𝑖𝑖𝛷𝛷𝑖𝑖 = 𝜀𝜀𝑖𝑖𝛷𝛷𝑖𝑖      (1.19) 

𝐹𝐹�(𝑖𝑖) = ℎ�(𝑖𝑖) + ��𝐽𝐽𝚥𝚥�(𝑖𝑖) − 𝐾𝐾𝚥𝚥� (𝑖𝑖)�
𝑁𝑁

𝑗𝑗

= ℎ�(𝑖𝑖) + 𝑉𝑉𝐻𝐻𝐻𝐻(𝑖𝑖)    (1.20) 

where 𝐹𝐹�𝑖𝑖 is the Fock operator for the ith electron, 𝜀𝜀𝑖𝑖 is the energy of the HF spin-orbital i, ℎ�(𝑖𝑖) is the one-

electron Hamiltonian, 𝐽𝐽𝚥𝚥�(𝑖𝑖) is the Coulomb operator representing the repulsive potential between electrons 

i and j, 𝐾𝐾𝚥𝚥� (𝑖𝑖) is the exchange operator accounting for the energy associated with the quantum effect 

produced by exchanging two electrons. The expression of the Coulomb and exchange operators will not be 

discussed here, but it is important to mention that the HF potential (𝑉𝑉𝐻𝐻𝐻𝐻) depends on the spin-orbitals 

themselves. Solving the HF equations thus requires an initial guess of the orbitals, allowing the energy to 

be computed. Consequently, the calculation is carried out through an iterative fashion, using an initial guess 

which is refined at each iteration and hopefully converges to the HF solution. 

Most importantly, the Coulomb operator represents the repulsive potential experienced by electron 

i, due to the average charge distribution of electron j. Therefore, movements of electrons i and j are not 

correlated as both experience each other fields in an average manner. This rough approximation constitutes 

the major limit of the HF method, and is the reason for the implementation of post-HF methods that may 

partly include electronic correlation. 

Numerous post-HF methods exist, such as Möller-Plesset perturbation theory [10], coupled clusters 

[11] and configuration interaction [12,13]. These correlated approaches will not be discussed here. 

1.1.3. Density functional theory 

From the early development of quantum physics, the wavefunction evidently retained all attention 

and has been the source point for computational methods. If the conventional approach to quantum 

chemistry indeed uses the wavefunction as the fundamental quantity to solve the quantum problem and to 

access information about any physical system state, one may wonder if another quantity (possibly simpler) 

may be used to achieve that goal. This assumption is motivated by the need to lower calculation costs of 

elaborate wavefunction techniques. Indeed, including correlation energy beyond the HF approximation 

requires the use of computationally complex methods which are responsible for a high increase of 

computational time. This inevitably restrains the size of molecular systems that can be tackled by such post-

HF methods. 

The electronic density will naturally come to minds when addressing this question: can we possibly 

replace the N-electron wavefunction with its dependence on 3N spatial plus one spin variables (so 4N 

variables) by a simpler quantity, the electron density? 



Is the electron density able to fully and uniquely describe the ground state of a system? Some clues 

are given by simple arguments. If the Hamiltonian operator is entirely determined by the positions and atomic 

numbers of nuclei and the total number of electrons, these three are also unambiguously assigned by the 

electron density. Actually, the integration of electron density over space gives the number of electrons and 

local maxima of electron density correspond to the positions of nuclei. Moreover, information about nuclear 

charges (i.e. the atomic number, Z) is also contained in the electron density, as the density at the nuclei 

positions depends on the atomic number. Yet a rigorous foundation has been set by the two Hohenberg-

Kohn’s theorems [14], marking the advent of electron density-based computational methods and making 

DFT possible.  

The first theorem is an existence theorem as it demonstrates that the electron density uniquely 

determines the Hamiltonian operator, and consequently all properties accessible through that operator, 

including the system energy.  

The second theorem proves that the density obeys a variational principle, just as does MO theory. 

It means that any well-behaved trial density integrating to the proper number of electrons, determines a trial 

Hamiltonian and wavefunction that will return an energy which is an upper bound to the exact energy, unless 

it is the exact Hamiltonian and wavefunction (see equation 1.21). 

𝜌𝜌𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑟𝑟) → 𝐻𝐻�𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ,Ψ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑎𝑎𝑎𝑎𝑎𝑎  〈Ψ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡�𝐻𝐻��Ψ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡〉 = 𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ≥ 𝐸𝐸0     (1.21) 

So, the starting point of DFT comes from the fact that the specification of the ground state density 

𝜌𝜌(𝑟𝑟) uniquely determines the external potential V(r) and therefore the Hamiltonian operator. The ground 

state energy is then a functional of the ground state density: 

𝐸𝐸[𝜌𝜌(𝑟𝑟)] = 𝑇𝑇[𝜌𝜌(𝑟𝑟)] + 𝑉𝑉𝑁𝑁𝑁𝑁[𝜌𝜌(𝑟𝑟)] + 𝑉𝑉𝑒𝑒𝑒𝑒[𝜌𝜌(𝑟𝑟)]     (1.22) 

In this equation, 𝑇𝑇[𝜌𝜌] accounts for the kinetic energy, and 𝑉𝑉𝑁𝑁𝑁𝑁[𝜌𝜌], 𝑉𝑉𝑒𝑒𝑒𝑒[𝜌𝜌] represent the potential 

energy of the electron-nucleus and electron-electron interactions, respectively. The latter may in turn be 

subdivided in two contributions arising from the Coulomb interaction plus a second term accounting for 

exchange and correlation effects, which are of a purely quantum nature: 

𝑉𝑉𝑒𝑒𝑒𝑒[𝜌𝜌(𝑟𝑟)] = 𝑉𝑉𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶[𝜌𝜌(𝑟𝑟)] + 𝑉𝑉𝑥𝑥𝑥𝑥[𝜌𝜌(𝑟𝑟)]     (1.23) 

 The above discussion led to the conclusion that the electron density determines the potential which 

in turns uniquely determines the Hamiltonian and thus the wavefunction. However it does not provide at this 

stage any simplification over MO theory, as one would have to solve the Schrödinger’s equation with the 

density-derived Hamiltonian. But a major breakthrough appeared with the development of self-consistent 

equations by Kohn and Sham [15], treating an inhomogeneous system of interacting electrons using the 

Hohenberg-Kohn formalism. The crucial idea was to take a fictitious system of non-interacting electrons (but 



with a density identical to the real system) as a starting point, then separating the energy functional into 

well-chosen components: 

𝐸𝐸[𝜌𝜌(𝑟𝑟)] = 𝑇𝑇𝑛𝑛𝑛𝑛[𝜌𝜌(𝑟𝑟)] + 𝑉𝑉𝑁𝑁𝑁𝑁[𝜌𝜌(𝑟𝑟)] + 𝑉𝑉𝑒𝑒𝑒𝑒′ [𝜌𝜌(𝑟𝑟)] + ∆𝑇𝑇[𝜌𝜌(𝑟𝑟)] + ∆𝑉𝑉𝑒𝑒𝑒𝑒[𝜌𝜌(𝑟𝑟)]    (1.24) 

where 𝑇𝑇𝑛𝑛𝑛𝑛[𝜌𝜌(𝑟𝑟)] represents the kinetic energy of non-interacting electrons, 𝑉𝑉𝑒𝑒𝑒𝑒′ [𝜌𝜌(𝑟𝑟)] is the classical electron-

electron repulsion, ∆𝑇𝑇[𝜌𝜌(𝑟𝑟)] is the correction to the kinetic energy due to the electronic interaction and 

∆𝑉𝑉𝑒𝑒𝑒𝑒[𝜌𝜌(𝑟𝑟)] regroups all quantum corrections to the electron-electron interaction. So, the first three terms of 

equation (1.24) are known and one may write an eigenvalue expression of (1.24) using orbitals, more 

precisely using the Kohn-Sham (KS) orbitals which are density orbitals: 

ℎ�𝑖𝑖𝐾𝐾𝐾𝐾∅𝑖𝑖 = 𝜀𝜀𝑖𝑖∅𝑖𝑖    (1.25) 

  

  



The one-electron KS operator is defined for an N-electron and M-nuclei system as: 
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𝑑𝑑𝑑𝑑′ + 𝑉𝑉𝑥𝑥𝑥𝑥    (1.26) 

where 𝑉𝑉𝑥𝑥𝑥𝑥  is responsible for the ∆𝑇𝑇[𝜌𝜌(𝑟𝑟)] and ∆𝑉𝑉𝑒𝑒𝑒𝑒[𝜌𝜌(𝑟𝑟)] contributions to the energy and typically called the 

exchange-correlation energy (even if it also consists in the correction to the kinetic energy of non-interacting 

particles). 

Similarly to MO theory, the KS orbitals may be expressed within a basis set of functions and the 

individual orbital coefficients are determined variationally such as in the HF procedure. Also, the Kohn-Sham 

process is carried out using an iterative self-consistent field (SCF) procedure.  

It is worth notice that DFT is an exact theory. So far no approximations were done and the minimal 

energy 𝐸𝐸[𝜌𝜌(𝑟𝑟)] is associated with the exact density. But DFT equations has to be solved in an approximate 

manner as the key operator (𝑉𝑉𝑥𝑥𝑥𝑥) is not exactly known. This constitutes the crux of the problem and the main 

difference with the HF method. HF theory is intrinsically an approximate theory, however it is solved exactly.6 

Hence, if DFT is often capable of producing much better results than the HF procedure with a comparable 

computational cost, the entire difficulty lays in the determination of the exchange-correlation functionals. 

The different types of functionals and the way they are build will not be discussed here, as it is a vast 

question (sometimes named the “functional zoo”…) and once again, it appears to be out of scope. The 

functional that was used in the present work is the so-called B3LYP (see 3.3). 

As a concluding remark, DFT may be regarded as the most cost-effective method to achieve a given 

level of accuracy, provided that the exchange-correlation functional is well chosen.  

1.1.4. Basis sets 

As stated in section 1.5.1.4, constructing a molecular wavefunction needs a set of functions 

describing atomic orbitals to be used in the LCAO expression of MOs. Such a set of mathematical functions 

is called a basis set. Basis sets’ efficiency obviously implies two main considerations: accuracy and 

computational cost. Evidently, increasing the number of basis functions will increase the physical accuracy 

of the computed MO, but will negatively impact the computational time. 

1.1.4.1. Slater-type orbitals (STOs) 

Slater-type orbitals have already been introduced in section 1.5.1.3 when discussing the spin-orbital 

approximation. If STOs are attracting when considering their resemblance to hydrogenic spherical 

harmonics, there is no analytical solutions to the integrals generated for calculating the energy (both from 

HF and DFT equations), and these should therefore be computed numerically, which drastically slows down 

calculations. This problem was addressed by replacing STOs by Gaussian functions, which mainly differ by 

                                                
6 These remarks are physically sound if an infinite basis set is used. 



their radial decay (𝑒𝑒−𝑟𝑟 vs 𝑒𝑒−𝑟𝑟2) and the presence (or absence) of cusp; this method was first proposed by 

Boys in 1950 [16]. 

1.1.4.2. Gaussian-type orbitals (GTOs) 

 If Gaussian functions are attractive when looking at their mathematical properties, such as their 

integration and their product (the product of two Gaussians is another Gaussian), they do not describe AOs 

as STOs do. Their decay is faster than exponentials and they flatten near zero.  

 

Figure 1. Behavior of a Slater type orbital s(r) and a Gaussian type orbital g(r), showing the stronger r-dependency 
and the flattening at short distances of the GTO. 

The general form of a normalized, atom-centered GTO in Cartesian coordinates is: 
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𝑥𝑥𝑖𝑖𝑦𝑦𝑗𝑗𝑧𝑧𝑘𝑘𝑒𝑒−𝛼𝛼(𝑥𝑥2+𝑦𝑦2+𝑧𝑧2)     (1.27) 

where the exponent 𝛼𝛼 is controlling the width of the Gaussian, i, j and k integers dictate the nature of the 

orbital (i.e. s, p, d, etc…). If these three are equal to zero, we obtain a Gaussian with a spherical symmetry, 

which is therefore an s-type function. If one of them is equal to one we obtain a p-type function, and a d-

type function with a sum equal to two. 

To alleviate the shape problems of GTOs, one may use them as building blocks to approximate a 

STO, combining the computational advantages of GTOs with the physical accuracy of STOs.  



 

Figure 2. Contraction of three GTOs, namely g1(r), g2(r) and g3(r), to fit a STO (s(r), bold solid line in the right-hand 
graph). The contracted GTOs form the minimal basis set which is noted STO-3G. 

These contracted GTOs may be written as: 

𝜑𝜑(𝑥𝑥, 𝑦𝑦, 𝑧𝑧;𝛼𝛼, 𝑖𝑖, 𝑗𝑗, 𝑘𝑘) = �𝑐𝑐𝑎𝑎  𝑔𝑔(𝑟𝑟)
𝑢𝑢

𝑎𝑎=1

    (1.28) 

An important feature of equation (1.28) is that it may add the necessary radial nodes by introducing 

negative ca coefficients. 

Multiple-ζ basis sets. The minimal basis set (STO-3G) consists in only 1 basis function for each 

type of orbital, from core to valence. This means that taking oxygen as an example, the basis set will consists 

in one 1s, one 2s, one 2px, one 2py and one 2pz basis function, each of them constructed from three 

Gaussians. In order to increase the flexibility of the basis set (which is ultimately intended to be used in a 

variational calculation), one may decontract it. For instance, a 2s orbital from the STO-3G could be 

separated as a two Gaussians orbital and a second orbital made of the third primitive Gaussian. This would 

of course neither increase the size of the basis sets nor its accuracy to fit the exact AO, but it will add an 

orbital to the HF (or KS) equations for computing the energy (i.e. in the secular equations) and the computed 

energy will be lowered, as more flexibility will be given to the Slater determinant. A basis set including two 

functions for each AO is called a double-ζ basis set; if there is three functions then it is a triple-ζ basis set; 

and so on. Such a splitting of the basis set is usually achieved for the valence-shell orbitals.  

Diffuse and polarization functions.  In order to better describe long-distance interactions and 

chemical bonding, basis sets may be augmented with diffuse and polarization functions. The former being 

GTOs with a slower radial decay and the latter are usually GTOs of higher secondary quantum numbers 

(for example a d-type orbital is added to a p-type orbital). Diffuse functions will help for long distances 

interactions. Indeed, it will not be possible to describe long range interactions if the basis set tends to zero 

too rapidly. Polarization functions will add angular flexibility to the calculated MOs, as these may largely 

differ in their shape when compared to the AOs used to construct them from the LCAO method.   



Notation for GTOs. Amongst the most used basis sets are the ones from Pople and co-workers. 

As an example, the Pople’s 6-311++G(2d,2p) basis set was used in Chapter 3: 

• 6 Gaussians forms the core orbitals (thus single-ζ orbitals). 

• A triple-ζ basis set consisting in 3 orbitals built from 3, one and one primitive Gaussian 

functions for the valence shell. 

• The first + indicates the presence of one set of diffuse s-type and p-type functions for the 

heavy atoms, the second + stands for the presence of diffuse s-type functions on 

hydrogens. 

• The (2d,2p) bracket enumerates the polarization functions. So two sets of d-type functions 

are added to the heavy atoms and two sets of p-type functions are added to hydrogen 

atoms. 

Beside the largely spread Pople’s basis sets, Dunning’s basis are also under intensive use. These 

are noted, for example, as: cc-pVnZ where n indicates the “ζ state”. Polarization functions are consistently 

added with respect to n and the “Aug” prefix indicates the addition of diffuse functions.   
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