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Immunotherapy has in recent years shown its potential to transform the treatment of cancer through triggering
antitumor T cell responses via immune checkpoint blockade. This approach has led to outstanding responses in
previously untreatable tumors. Stimulator of interferon genes (STING) has now been revealed as a key player
in the field and a critical mediator of innate immune-sensing of cancer, and in turn, as a promising target
for immunotherapy. Pharmacological activation of the host STING pathway can trigger T cell-mediated tumor
regression and make immunologically ‘cold’ tumors ‘hot’. This can help to overcome local immunosuppressive
environments as seen in cancer, and can increase the effectiveness of classical immune checkpoint blockade.

Immune evasion is now well established as a major hallmark of cancer [1]. Reactivation of the immune system
and redirection of the immune response toward the tumor has been a major focus of attention in the past few
years and immunotherapy has earned its place in the anticancer therapeutic arsenal, alongside the traditional pillars
of chemotherapy, radiotherapy and surgery. The remarkable impact of immunotherapy on previously untreatable
tumors and advanced metastatic cancers led the Nobel prize in Medicine or Physiology in 2018 to be awarded
to James Allison and Tasuku Honjo for their discovery of immune checkpoint blockade. This approach consists
of releasing the local inhibition of the immune response within the tumor microenvironment, using monoclonal
antibodies directed against the cytotoxic T lymphocyte antigen 4 (CTLA-4) [2] and the programmed death 1
(PD-1) surface receptors [3], or its ligand, PD-L1 [4]. Despite impressive clinical outcomes and more than 50 Phase
III trials involving anti-CTLA4, anti-PD1 and anti-PD-L1 monoclonal antibodies [5], responses are highly variable
between patients and tumor types, with anti-CTLA4 therapy inducing positive response in approximately only
15% of patients with metastatic melanoma [6].

The cGMP-AMP synthase (cGAS)-STING-IRF3 pathway, a novel target for immunotherapy
Tumor infiltration by T cells has been shown to be a prerequisite for an efficient response to immunotherapeutic
treatments [7]. ‘Cold’, nonimmunogenic tumors are less responsive to immune checkpoint inhibitors; therefore,
promoting T cells infiltration in the tumor microenvironment is a promising approach to increase efficacy of
immunotherapeutic drugs and ‘heating’ up the tumors. The endoplasmic reticulum adaptor protein stimulator of
interferon genes (STING, gene ID TMEM173) activates innate immune responses through the production of type
I interferon. Cytoplasmic DNA, which can be either pathogen or tumor-derived, triggers the activation of the host
cGAS-STING-IRF3 pathway, mediated by the cGMP-AMP synthase (cGAS), a cytosolic enzyme that generates
2’,3’-cGAMP (cyclic Guanosine monophosphate [GMP]-Adenosine monophosphate [AMP]) upon binding to
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double-stranded DNA. This endogenous cyclic dinucleotide (CDN) then binds to STING and promotes the
induction of the immune cascade [8]. This leads to activation and infiltration of T cells and promotes antitumor
response [9]. The development of STING agonists has rapidly grown as a novel class of immunotherapy, either alone
or in combination with immune checkpoint blockade. STING agonists can be grouped in two main subtypes:
nucleotidic or non-nucleotidic agonists.

Nucleotidic STING agonists
The prokaryotic c-di[GMP] and eukaryotic 2’,3’-cGAMP CDNs have demonstrated promising antitumor activity
and potent immunostimulatory effects both in vitro and in vivo [10,11]. These natural CDNs are however poor drug
candidates for anticancer therapies, owing to their instability and high polarity, which limits their diffusion across
cell membranes. This led to the development of synthetic CDNs. The ‘dithio’ analog, ADU-S100 (also called ML-
RR-S2-CDA or MIW815) [12], uses sulfur-modified phosphodiester linkages on a c-di[AMP] scaffold to increase
its resistance to enzymatic degradation [13]. Since 2012, the preparation and utilization of ADU-S100 has been
patented by Aduro Biotech (CA, USA) [14–20]. Encouraging preclinical results have brought ADU-S100 forward
to Phase I clinical trials, where it is administered by intratumoral injection to patients with advanced metastatic
solid tumors or lymphomas, alone or in combination with ipilimumab (NCT02675439) or with an anti-PD1
(NCT03172936). Partial results have been disclosed and are encouraging but more complete data will be available
in 2020. Other novel synthetic CDNs have been patented by Merck (NJ, USA) [21,22]. One of which, MK-1454,
is currently undergoing Phase I trial for mono- and combination therapy with pembrolizumab for the treatment
of solid tumors and lymphoma (NCT03010176), and the first results are expected in 2021. GlaxoSmithKline
(London, UK) developed and patented synthetic CDNs in 2015 [23], including fluorinated derivatives as STING
modulators. More recently, Bristol-Myers Squibb (NJ, USA) filed a patent on novel CDNs as anticancer agents [24].

Non-nucleotidic STING agonists
5,6-dimethylxanthenone-4-acetic acid (DMXAA), also known as vadimezan or ASA404, was first discovered as a
vascular disrupting agent [25], but is now recognized as a non-nucleotidic STING agonist and has rapidly entered
clinical trials. However, DMXAA is a poor agonist of human STING and ultimately failed in Phase III clinical
trials in combination with paclitaxel and carboplatin for the treatment of non-small cell lung cancer [26]. Yet various
combinations of DMXAA with marketed anticancer drugs have been patented, including platinum compounds,
vinca alkaloids, alkylating agents, anthracyclines, topoisomerase I inhibitors, antimetabolites and topoisomerase
II inhibitors [27,28]. Combinations with EGFR signaling inhibitors were also patented [29], including Erbitux™
(cetuximab), a monoclonal antibody binding to EGFR, Tarceva™ (erlotinib) and Iressa™ (gefitinib), which are
small molecule EGFR inhibitors. A European patent was filed for DMXAA combination with gemcitabine, 5-
fluorouracil, doxorubicin and irinotecan [30]. DMXAA further served as a proof-of-concept for designing novel
non-nucleotidic STING agonists but without significant success, although one group tried to overcome the low
affinity of the DMXAA scaffold for human STING by adding a hydrogen bond donor on the C7 position [31,32].
Currently, no non-nucleotidic STING agonists have reached clinical trials but GSK have disclosed two novel
amidobenzimidazole STING agonists inducing significant tumor growth inhibition using in vivo mice tumor
models [33] and have filed their discovery under the patent WO2019069270A [34].

Perspective
Large pharmaceutical companies have dominated the development of CDNs as STING agonists, but there is still
room for the development of more drug-like non-CDN structures. There is no doubt that this emerging and
exciting field will continue to garner much attention from the scientific community. Rational drug design and
modern computational approaches are expected to provide more insights as the crystal structure of human STING
was solved in 2013 [35], additionally the binding modes of active ligands have been comprehensively studied [31,33,36].

The combination of STING agonists with current immunotherapy regimens is showing great promise, consid-
ering that a cold tumor microenvironment appears to be the Achilles heel of immunotherapy, and that STING
pathway activation could ‘heat up’ the tumor and trigger infiltration by immune cells, which in turn can be un-
leashed by the checkpoint blockade. This would allow the ability to target tumors refractory to immune checkpoint
blockade with a low risk of systemic side effects, and increase the likelihood of STING agonists to become important
cancer drugs in the near future.
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